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Strain refraction in layered systems 
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Abstract--Strain refraction across competence contrasts is presented as a simple model consisting of two 
components, a homogeneous strain and a heterogeneous simple shear. For Newtonian materials, the ratio of the 
layer-parallel simple shear component in adjacent layers is the inverse of their viscosity ratio. Strong changes in 
ellipsoid size, shape and orientation are predicted across viscosity contrasts. 

The geological implications of strain refraction theory are considered within the context of the 'cleavage/strain 
debate'. The particular relationships of relative competence and strain revealed by the refraction model may 
contribute to the problem of why cleavages of different morphologies in rocks of different lithologics (and 
kinematic histories) should appear to be subparallel to the X Y  planes of measured strain ellipsoids. Competent 
rocks should develop dominantly layer-orthogonal strain, and incompetent layers shear-dominated deformation. 
A variety of structural features ranging from cleavage refraction, changing lineation orientations, folds 
transected by cleavage, changes from coaxial to non-coaxial deformation, and ramp-flat fault geometry may bc 
the result of stress and strain refraction in rocks. 

INTRODUCTION 

THE TERM strain refraction is used in this paper to describe 
changes in strain orientation and intensity across a planar 
boundary between two different materials. It has been 
shown that, in theory, stresses oblique to layering in 
multilayered viscous continua should refract across a 
viscosity contrast (Str6mgfird 1973, Treagus 1973, 1981). 
Following this theory, finite-strain refraction was 
modelled theoretically for planar Newtonian layers in 
perfect adherence (Treagus 1983). 

It was shown in Treagus (1983) that homogeneous 
strain should only exist in multilayers with viscosity 
contrasts, if the principal strains are layer-parallel and 
layer-orthogonal. In all other cases, principal strain axes 
will refract from layer to layer, and their magnitudes 
vary sympathetically. Using the strain axis convention, 
X I> Y/> Z, the X Y  plane was found to refract towards 
layer-normal, with a decrease in strain, in more viscous 
layers, and toward the layer, with an increase in strain, 
in less viscous layers (Fig. 1). In these 2D models, two 
axes refract and the third is constant in the plane of 
layering. Thus the strain ellipsoids refract on a common 
principal axis. For the case of plane strain with Y = 1 
parallel to layering (Fig. 1), strain refraction is truly 2D. 
For other cases (Y # 1, or X or Z parallel to layering), 
ellipsoid variations are not fully appreciated in a 2D 
view. Figure 2 is an example in which refraction of strain 
axes is associated with such marked changes in axial 
values that a changeover of principal axes (X and Y) 
OCCURS. 

Treagus (1983) compared theoretical strain refraction 
patterns to sense of cleavage refraction across different 
lithologies, as described by Sorby (1853) and Harker 
(1886). However, her review of the evidence for assum- 
ing that refracted cleavage exactly tracks refracting X Y  

planes in different lithologies was inconclusive. The 
main proof that cleavage is parallel to X Y  planes comes 
from well-cleaved slates (Siddans 1972, Wood 1974) and 
comparisons of cleavage patterns to theoretical strain 
patterns in folded layers (Dieterich 1969). 

Ramsay has illustrated patterns of strain refraction 
across competence contrasts (Ramsay 1982, Ramsay & 
Huber 1983, p. 184, 1987, p. 462) that are qualitatively 
similar to the theoretical patterns in Treagus (1983). 
Strain refraction, here, is modelled on cleavage refrac- 
tion: "cleavage planes represent the trace of X Y  planes 
of adjacent strain ellipsoids a n d . . ,  cleavage must obey 
the geometric rules of finite-strain trajectories" (Ramsay 
& Huber, p. 184). Cleavage refraction towards bedding 
is indicative of layers of lower competence, and thus an 
'order of competence' can be determined for a sequence 
of rock types (Ramsay 1982). 

The relationship between strain and cleavage and thus 
between strain refraction and cleavage refraction is 
important and still not fully understood. A later section 
of the paper is devoted to this topic. 

In Ramsay's model, competence is equated with duc- 
tility, and is essentially a measure of strain intensity. 
However, Hobbs et al. (1976, p. 67) distinguished com- 
petence, a measure of relative strength, from ductility, 
the ability to undergo permanent strain. In theoretical 
analyses of buckling layers, the "competent layer' has 
been used to mean either a greater modulus of elasticity 
or a greater viscosity (Ramberg 1964, Hara & Shima- 
moto 1984, p. 194). Lister & Williams (1983) suggested 
an alternative definition for competence. They con- 
sidered deformation in rock masses as partitioned into 
zones with different flow histories, where competent 
layers are characterized by coaxial deformation and 
incompetent layers non-coaxial deformation. Clearly, 
competence is not equatable to any single physical prop- 
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Fig. 1. Two examples of 2D finite-strain refraction across planar  layers with Newtonian properties,  after Treagus (1983, 
fig. 6 and table 2). The stippled layers show the ' s tandard '  strain ellipse (axial ratio 2), oriented with X a t  60 ° to layering in 
(a), and 30 ° in (b). Strain refraction is shown for a layer with viscosity ratio V = 5 (5 × standard) above,  and V = 0.2 below. 

Y = l perpendicular  to page, throughout.  

erty and it may, according to circumstances, involve 
relative ductility, viscosity, or strength. In the present 
paper, rock behaviour is modelled as Newtonian vis- 
cous, and competence contrasts are used to describe 

V : 5  
effective viscosity ratios in rocks. 

Ramsay & Huber (1983, p. 184) suggested that cleav- 
age/strain refraction should be considered in terms of 
three independently compatible components of strain 
analogous to the strain components in ductile shear Standard 

(V-- 1) 
zones (Ramsay & Graham 1970, Cobbold 1977, Ramsay 
1980): (1) homogeneous strain; (2) heterogeneous 
simple shear; and (3) heterogeneous dilation perpen- 
dicular to layering. The first two components are the 
basis of the theoretical model of strain refraction in v--o.2 
Treagus (1983) and this paper. The third component is 
not included in this analysis, because layers are modelled 
as incompressible. 

The present strain refraction model considers a system 
of planar layers in which stresses and strains refract from 
one homogeneous state to another in accordance with 

Fig. 2. Schematic representat ion of 3D shape variation of ellipsoids 
refracting in 2D. X is parallel to layering in the standard layer 
(stippled) and is the axis of refraction; this becomes the Y axis in the 
V = 0.2 (less competent)  layer, because of the increased layer-parallel 
shear component .  The refracted X Y  planes are shaded with lines 
parallel to X. Note that all ellipsoids have the same layer-parallel 

sectional ellipse. 
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viscosity changes. The refraction of strain axes is neces- 
sary for any multilayer with viscosity contrasts which is 
in oblique strain, either in 2D or 3D. Treagus (1983) 
proposed that it was the obliquity of straining which gave 
rise to strain and cleavage refraction on fold limbs, rather 
than a particular mechanism of folding. However, 
Ramsay (1967, p. 403), Henderson et al. (1986) and 
Ramsay & Huber (1987, p. 462) described cleavage 
refraction and cleavage fanning in terms of idealized 
models of strain in folds: tangential longitudinal strain 
and flexural slip (layer-parallel simple shear). In this 
case, all strain refraction is fold-related. 

Layered systems of different competence, such as are 
modelled here, would be expected to buckle in com- 
pression and develop the kinds of fold-related strain 
variations computed from finite-element modelling (e.g. 
Dieterich 1969, Shimamoto & Hara 1976, Hara & 
Shimamoto 1984). I consider such strain variations to be 
two-fold: (1) strain fans, which are patterns of inhomo- 
geneous strain associated with bending in and around 
buckle-fold hinges (see Roberts 1971, Cobbold & Bar- 
botin 1988), and (2) strain refraction, which involves 
changes of homogeneous strain across layer competence 
contrasts, as seen in fold limb zones. The former con- 
siders kinematically compatible inhomogeneous strains 
and strain gradients (e.g. Cutler & Cobbold 1985, 
Cobbold & Barbotin 1988, and source references 
therein) within one materially homogeneous region. 
The latter considers the mechanics and kinematics across 
materially different layers, with a planar interface 
(Treagus 1981, 1983, Cobbold 1983). Both models 
would seem equally important in the investigation of 
strain in folded multilayers, because natural strain 
patterns must obey the rules of both together. These 
combined rules will determine the mechanism of folding. 

The two components of strain refraction considered in 
this paper are layer-parallel/orthogonal strain and layer- 
parallel simple shear. These are equivalent to Ramsay's 
(1967, pp. 398 & 391) ideal fold-strain models, tangential 
longitudinal strain and flexural slip. Refraction model- 
ling thus provides the mechanics for apparent changes in 
folding 'mechanism' across competence contrasts, and 
offers the means to quantify these components in terms 
of multilayer viscosity ratios. 

MODEL OF STRAIN REFRACTION ACROSS 
VISCOUS LAYERS 

The theoretical model of strain refraction is taken 
from Treagus (1973, 1981, 1983). Layers are assumed 
planar, semi-infinite, Newtonian viscous, isotropic and 
incompressible. Given a known state of homogeneous 
strain in one layer, with principal axes oblique to layer- 
ing, can we determine the state of strain in an adjacent 
layer of known viscosity ratio? This may be called the 
refracted strain. The solution depends on two 'rules' 
which are given here in the general 3D form for strain 
ellipsoid refraction. 

(1) The refracted ellipsoid shares the same ellipse sec- 

tion with the known ellipsoid at the layer interface. This 
defines the geometrical compatibility condition for 
coherent layers. 

(2) The shear stress on the interface plane will be equal 
in adjoining layers. This defines a condition of mechan- 
ical compatibility for adherent layers. Equal layer-paral- 
lel shear stresses in adjacent layers of different viscosity 
must, by definition, signify unequal shear strain rates, 
which 'jump' in inverse proportion to the viscosity. An 
important simple relationship exists for finite layer- 
parallel shear strains across a planar viscosity boundary 
in Newtonian materials (see Cobbold 1983, Treagus 
1983, appendix 1): the finite (and incremental) shear 
strain ratio across the interface is the inverse of the 
viscosity ratio. (This is not the case for non-linear 
rheologies whose viscosities are a function of strain, see 
Cobbold 1983, unless they changed by the same factor so 
that their viscosity ratios stayed constant.) 

The two rules above are the basis of the algebraic and 
graphical solutions for 2D strain refraction presented in 
Treagus (1983). They are being applied currently to 
deriving solutions for 3D refraction. No 3D algebraic 
solutions have been found, comparable to those for 2D 
in Treagus (1983, table 1). Results to date have been 
derived by graphical methods, using 'Mohr loci' on the 
Mohr diagram for 3D strain (Treagus 1986). 

Any system of refracting strain ellipsoids can be consi- 
dered to comprise two finite components (Fig. 3). 

Component (a) is a homogeneous state of layer-paral- 
lel/perpendicular strain that distorts the whole multi- 
layered system equally. This satisfies rule (1) above, and 
is abbreviated, here, to the layer-orthogonal strain com- 
ponent. The layer-parallel strain may be a shortening or 
an extension. 

Component (b) is a heterogeneous state of layer-paral- 
lel simple shear that distorts the system such that across 
each viscosity interface, the layer-parallel shear strain is 
multiplied by the inverse viscosity ratio. This satisfies 
rule (2). By definition, this component is plane strain. 

For 2D models, the separation of strain refraction into 
components of homogeneous strain and heterogeneous 
simple shear is easy to visualize and to illustrate, as 
shown in Fig. 3. The ellipsoids for both components 
share a principal axis parallel to the interface (layering), 
which is the axis of refraction of the finite-strain ellip- 
soid. Mohr circles can be used to illustrate the relation- 
ships between the two components (Fig. 4). 

For the general 3D case, the two components do not 
have a common principal strain axis in the layering 
plane, but are mutually oblique (Fig. 5a). The combined 
effects of (a) homogeneous strain and (b) oblique 
heterogeneous simple shear result in finite-strain ellip- 
soids which refract in 3D (Fig. 5b). There is, therefore, 
no unique cross-section which can illustrate 3D strain 
refraction in 2D. 

It must be emphasized that the two components (a and 
b) operate together incrementally. Nevertheless, it is 
convenient to model the finite-strain ellipsoids as a finite 
component of homogeneous layer-orthogonal strain (a) 
in all layers, followed by finite layer-wide simple shear 
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Fig. 3. The 2D finite-strain refraction example in Fig. l(a) can be modelled as a homogeneous strain component (a) 
followed by a heterogeneous simple shear component (b) which differentially shears component (a) as a 'card-deck' to 
produce the finite refracted ellipses, The shear component refracts as the inverse viscosity ratio. Standard layer stippled. 

zones (b) with shear strain inversely proportional to 
viscosity ratio (Fig. 6). Component (b) thus distorts (a) 
in card-deck fashion. An alternative model of hetero- 
geneous simple shear followed by layer-orthogonal 
homogeneous strain would be equally valid, but is less 
convenient because the values of simple shear would not 
now be equivalent to the layer-parallel shear strains, but 
would include a factor of the homogeneous strain com- 
ponent (see Sanderson 1982). 

By factorizing refracted strain ellipses and ellipsoids 
into homogeneous and heterogeneous components, 
these strain patterns become comparable to those in 
many other studies of heterogeneous strain patterns. 
Thc strain variations in a multilayer might thus be 
considered to represent a system of ductile shear zones 

(Ramsay & Graham 1970) on the layer scale, or equiva- 
lently, a form of banded deformation (Cobbold 1977, 
Cutler & Cobbold 1985), where the bands are the layers, 
and each is a compatible homogeneous strain domain 
(Means 1983). Alternatively, the whole multilayer 
deformation can be regarded as partitioned into differ- 
ent flow histories in different layers, as described by 
Lister & Williams (1983). The factorization of strain in 
thrust belts into components of pure shear and simple 
shear (Coward & Kim 1981, Sanderson 1982) has some 
similarities with factorization of strain refraction. How- 
ever, these methods are concerned with patterns of 
regional strain variation, rather than strain compatibility 
on a domainal scale or variations across contrasting 
layers. 

Standard strain ellipse 

1 1 Component (a): homogeneous strain 

Ff I 

lta' t a" 

~J 

Component (b): heterogeneous simple shear 

2! Vx5 
, /  

, ' /  
/ / , /  

i I , /  
t / 

V : O . 2  t t / 

/ /  
/ / 

/ , /  
t ~  t,/, 

/! ~"/- / 

J 
s S 

.. Standard (V= 1) 

..~ v=5~ .~' 
a" 

Fig. 4. Mohr circles of the components of plane strain refraction in Fig. 3, The homogeneous layer-orthogonal component 
(a) is given by 2'~, and 1/2j from the standard ellipse. The simple shear components (b) are given by ? for the standard ellipse 

(V = 1) and 7/V for the refracted ellipses (V = 5 and 0.2). 
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Fig. 5. An example of 3D strain refraction. (a) and (b) Lower-hemisphere equal-area projections with layering horizontal. 
(a) Strain components:  homogeneous layer-orthogonal component  on axes P=, P2, N, in all layers: heterogeneous 
layer-parallel simple shear components  in direction of arrow, values given by sheared layer-normals (N~'~) for 'standard'  
(V = 1, star), V = 5 (circle) and V = 0.2 (triangle) layers. Diamond at 90 ° to shear direction, in layering. (b) Orientation of 
finite-strain axes (X, Y, Z) for V = 1 (stars), V = 5 (circles) and V = 0.2 (triangles) layers. XYplanes  shown by solid curve 
for V = 1, broken for V = 5, and dot-dash for V = 0.2; their differences in strike demonstrate their different intersections 
with layering. End member  refraction trends are shown by fine broken curves, with small arrows indicating positions of X, 
Y, Z for V ~ oo and V--+ 0. (c) Schematic 3D drawing of the strain refraction in (b), Standard layer stippled. X Y  phmes 
shaded with lines parallel to X, for each layer. Note that all layers have the same sectional ellipse (P~, P_~) and direction of 

shear, but different intersections of X Y  planes with layering. 
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Fig. 6. Finite-strain ellipse refraction (black ellipses) across a set of layers with a range of viscosity ratios to the stippled 
standard layer. The homogeneous  layer-orthogonal strain is shown on the left, and the heterogeneous simple shear given 
by the 7 trajectory of the original bedding-normal.  The mean Xt ra jec tory  is almost parallel to the mean 7 trajectory, but at 
a slightly smaller angle to layering. Note that the standard layer (V = 1) does not represent  the average strain for this system. 
The end members  of strain refraction are layer-parallel strain (zero y) for V = oo, and infinite layer-parallel simple 

shear + layer-orthogonal strain for V = 0. 

FEATURES OF STRAIN REFRACTION 
MODELLING 

Many of the features of strain refraction have been 
described in detail in Treagus (1983); others were pre- 
dicted in Treagus (1981). The present model of strain 
refraction in terms of a homogeneous component of 
layer-orthogonal strain and a heterogeneous component 
of layer-parallel simple shear allows these features to be 
more easily understood. 

For any analysis of strain refraction it is assumed that 
there is a known state of strain in a particular layer, 
which becomes the standard layer. Strain states in adja- 
cent layers are described in terms of their viscosity ratios 
to the standard layer. Although it would be convenient 
to consider the standard layer as representing the 'bulk' 
behaviour and the bulk strain in a multilayer, this would 
not be correct. Figure 6 demonstrates that no single 
layer in the seven-layer multilayer represents the 'bulk' 
or average strain. The bulk shear strain is given by the 
arithmetic means of all 7s, and thus the bulk (shear) 
viscosity ratio is the reciprocal mean of all Vs (0.37 in 
Fig. 6). But the bulk behaviour is anisotropic, whereas 
all individual layers are isotropic (see Biot 1965, p. 186, 
Cobbold et al. 1971). The 'standard' layer simply has the 
median viscosity of the system. 

The main features of finite-strain refraction are sum- 
marized for three orientations of standard and/or bulk 
strain. 

Layer parallel/orthogonal finite strain 

If the standard strain ellipsoid has principal axes 
parallel and perpendicular to layering (whether layer- 
parallel compression or extension), there will be no 

strain refraction because there is no component of layer- 
parallel shear strain. Therefore, despite viscosity con- 
trasts, there will be finite homogeneous strain. 

Two-dimensionally oblique 

Strain ellipsoids which have one principal axis parallel 
to layering will refract about this common principal axis. 
Strain refraction can be viewed in 2D by patterns of 
ellipse refraction (e.g. Figs. 1,3 and 6). For the case of 
plane strain in the standard layer (Y = 1 parallel to 
layering), refracted strain ellipsoids will also be plane 
strain. In all other cases variations of ellipsoid shape will 
arise from refraction, and in certain circumstances, the 
principal axis in layering (the refraction axis) may change 
from X t o  Y, or Yto Z (Treagus 1983) (e.g. Fig. 2). 

The simplest way to analyse strain refraction patterns 
in 2D is to distinguish components (a) and (b) in the 
standard layer (Fig. 6). Then for example, a layer with 
viscosity ratio V = 10 (10 x standard) has the same 
component (a) and 0.1 x component (b). Its refracted 
ellipsoid is thus very close to component (a), which in 
this 2D case is layer-orthogonal coaxial strain (pure 
shearing). A V = 0.1 layer also has the same component 
(a), but 10 x component (b). Its finite strain will be 
dominated by the simple shearing component but will 
not be perfect layer-parallel simple shear unless com- 
ponent (a) is zero (i.e. the case of heterogeneous simple 
shear). 

Three-dimensionally oblique 

This is the general case where ellipsoids refract but not 
on a common principal axis (Fig. 5). Three-dimensional 
refraction of ellipsoids is difficult to illustrate, and pro- 
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jections provide a better representation of true orien- 
tations. The example in Fig. 5 is from work in progress 
which uses the Mohr diagram for 3D strain with 'Mohr 
loci' (Treagus 1986) to represent interface sectional 
ellipses and derive graphical solutions. A consideration 
of the two strain components allows general rather than 
specific conclusions to be drawn for 3D strain refraction 
in the present paper. 

Recall that all refracting ellipsoids share a common 
ellipse section on layer interfaces. The two principal 
axes of this ellipse (Pj, P2), together with a third normal 
to layering (N), define the layer-parallel/orthogonal 
strain ellipsoid (component a) (Fig. 5a). The shear strain 
for the initial layer-normal (tan (N AND)),  (?'±max in 
Treagus 1986) defines the simple shear component (b) in 
each layer. This component changes its value (but not 
direction) from layer to layer, inversely with viscosity 
ratio (arrowed line, Fig. 5a). The two components are 
mutually oblique. All three principal finite strain axes 
(X, Y, Z) refract in 3D (Fig. 5b) and there is therefore 
no common 'axis of refraction' for a multilayered system 
in 3D-oblique strain. As for the 2D case, layers of 
greater viscosity than 'standard' will exhibit finite-strain 
ellipsoids close to the layer-orthogonal homogeneous 
strain component, whereas lower viscosity layers will 
reflect the strong simple shear component. 

The relationship of refracting X Y  planes to the sec- 
tional ellipse in layering is a useful measure of 3D strain 
refraction. In any generally oblique section of an ellip- 
soid, the sectional ellipse axes are not parallel to the X Y  
plane intersection (Flinn 1962, Ramberg 1976, Bor- 
radaile 1978, Treagus & Treagus 1981, Lisle 1986, 
Treagus 1986). For the refracted ellipsoids in Fig. 5, it is 
seen that the angle between the layer elongation (P1) 
and the X Y  plane intersection is different for the three 
layers. In the V = 5 layer, the X Y  plane intersects the 
layer very close to the layer elongation, whereas in the 
V = 0.2 layer it is more markedly oblique than for 
V = 1 (standard). This trend has been confirmed in 
other examples from work in progress. 

End member refraction 

The end members of strain refraction are the infinitely 
stiff layer (V = ~)  and the infinitely weak layer (V -- 0). 

Infinitely stiff." type 1. The layer-parallel simple shear 
(component b) refracts to zero (Fig. 6). Finite strain is 
entirely component (a), a layer-orthogonal strain. The 
principal axes of the strain ellipsoid will be parallel to the 
interface ellipse axes (PI, P2) and layer-normal (N) (e.g. 
Fig. 5b). 

Infinitely weak: type 2. The layer-parallel simple shear 
(component b) refracts to an infinite value. Finite strain 
is thus infinite simple shear, together with component 
(a), which is negligible in comparison (Fig. 6). The X 
axis of the strain ellipsoid will be in the direction of the 
shear component (Fig. 5b, arrow), with Y at 90 ° in the 
layer plane. 

SG ID:5-F 

In practice, layers with viscosity ratio of >10 may be 
regarded as type 1 with approximate layer-orthogonal 
strain. Likewise, layers with viscosity ratio of <0.1 will 
approach type 2, but with large rather than infinite 
layer-parallel simple shear. Regardless of the scale of 
simple shear, there will always be a homogeneous com- 
ponent of layer-orthogonal strain recorded, so that type 
2 refraction is not exact plane strain. 

Strain history 

The finite-strain refraction patterns illustrated in Figs. 
1-6 cannot provide direct information on the strain 
histories in each layer. Elliott (1972) pointed out that a 
given finite deformation can be achieved on any number 
of different deformation paths. (Elliott's "deformation 
paths" record "pure strain" and rotation histories, and 
are thus synonymous with 'strain history' in this paper. 
For a discussion of the different definitions of defor- 
mation and strain, see Means 1976, p. 150.) For 
example, Hobbs et al. (1976, p. 30) illustrated how a 
finite simple shear could be reached by either progressive 
simple shear or progressive pure shear plus rigid-body 
rotation. 

To determine the strain history of a finite-strain state, 
some recorders of the strain path are required (Elliott 
1972). The finite-strain ellipsoids in this paper reveal 
nothing of their past, but a comparison between adjacent 
compatible strains and consideration of the two refrac- 
tion components may reveal some information on rela- 
tive strain histories. Because of the different proportions 
of layer-parallel shearing in layers of different viscosity, 
it can be deduced that different layers will have under- 
gone different strain histories. It might seem obvious to 
deduce that the progressive increase in the simple shear 
component with decreasing viscosity indicates a pro- 
gressive increase in the non-coaxiality of strain. (For 
definitions of coaxial and non-coaxial strain paths, see 
Hsu 1966, Elliott 1972, and Means et al. 1980.) Such a 
conclusion would be convenient, and might seem intui- 
tive, but it is not necessarily correct. 

It has already been noted that simple shear can 
develop by pure shear and rigid rotation. Likewise, it 
cannot be assumed that all of the layer-parallel simple 
shear in the examples is progressive simple shear (imply- 
ing non-coaxial straining). For example, in Fig. 1 the 
central standard layer may have undergone a progressive 
pure shear on axes parallel to the page sides, which is 
coaxial straining; layering would have been less inclined 
initially. Unstraining to maintain compatibility will 
require that the layers above and below had non-coaxial 
straining (of opposite sense). However. Fig. 3, which is 
identical to Fig. l(a) but drawn with layering horizontal, 
prompts an interpretation which excludes layer rotation, 
and it would then seem obvious that the top layer was 
nearest to a coaxial strain history and the lower layer the 
most non-coaxial. This illustration serves to show that 
strain refraction patterns may provide useful criteria for 
relative non-coaxiality of strain paths in a multilayer, but 
absolute measures require that the strain path is known 
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in one layer. If the 'bulk' deformation is specified as 
coaxial straining, layers of greater and lesser viscosity 
should be expected to have non-coaxial strain histories 
with opposed senses of internal vorticity (Means et al. 
1980). However, if the most competent layers can be 
shown to have the closest to a coaxial strain history, as 
suggested by Lister & Williams (1983), the strain his- 
tories in layers of decreasing competence will be pro- 
gressively more non-coaxial, in direct relationship to 
their layer-parallel shear component. Such a trend has 
important implications for the development of structures 
and fabrics in rocks, as outlined later. However, until it 
is proved correct, the trend of increasing non-coaxiality 
with decreasing competence should be treated only as a 
tentative working model. 

IS CLEAVAGE REFRACTION FINITE-STRAIN 
REFRACTION? 

The strain refraction model has demonstrated a trend 
with decreasing viscosity, characterized by (1) increasing 
strain intensity, (2) decreasing angle of the X Y  plane to 
layering, and (3) an increasingly non-coaxial strain his- 
tory. In rocks, a similar trend is seen for cleavage 
refraction from weak approximately layer-perpendicu- 
lar cleavage to intense layer-acute cleavage, from psam- 
mitic to pelitic rocks. Sorby (1853) and Harker (1886) 
equated such cleavage refraction to strain refraction and 
a greater degree of compression in the latter lithologies. 
Ramsay (1982) and Ramsay & Huber (1983, p. 184) 
follow this tradition that refracted cleavage represents 
finite XY-plane trajectories in rocks. However, Williams 
(1979) (see also Treagus 1983) questioned the evidence 
for this assumption in general, rather than for slates in 
particular (cf. Siddans 1972, Wood 1974), and asked 
whether exact parallelism of cleavages to principal 
strains could be distinguishable from subparallelism, in 
practice. Henderson et al. (1986) have recently taken up 
this question for cleavages which refract in folds. 

Hobbs et al. (1976, pp. 233-246) and Williams (1976) 
investigated the implications for cleavage-forming pro- 
cesses, if cleavage planes track X Y  planes throughout 
their development. For a general non-coaxial strain 
history, X Y  planes are not material planes, but occupy 
progressively different material positions in the rock. 
The question is whether cleavages of different mor- 
phologies (see Powell 1979, Borradaile et al. 1982) can 
progressively move through a rock in the manner 
required (as implied by Ramsay 1982), or whether cleav- 
ages behave as material surfaces which become virtually 
parallel to X Y  planes in some situations (Williams 1976, 
Ghosh 1982). Strain refraction modelling will be applied 
to two idealized cleavage models  in an attempt to answer 
this dual question. 

Mode l  1. Cleavage refraction represents XY-plane 
refraction across multilayers, as maintained by Ramsay 
(op. cit.). For this model, cleavage will only represent 

material planes for coaxial strain histories. Cleavage 
refraction will exactly follow the X trajectory in Fig. 6. 

Mode l  2. Cleavage initiated perpendicular to bedding 
during early layer-parallel shortening (P. F. Williams, 
personal communication 1982, Henderson et al. 1986), 
and was subsequently refracted during oblique straining 
(folding), as material planes. The cleavage angle to the 
layer normal (fl in Treagus 1982) is thus the layer-parallel 
angular shear in each layer. From refraction theory, 
tan fl ratios will give the inverse viscosity ratio (Treagus 
1988). In Fig. 6, cleavage refraction would be given by 
the y trajectory. 

Despite the differences between the two models (and 
all that they imply), they appear to give rise to extremely 
similar theoretical orientations of cleavage for shortened 
layers. In Fig. 6, the X trajectory and ~: trajectory are 
virtually indistinguishable for V ~> 5 and V ~< 0.2; in the 
standard (V = 1) layer, there is - 6  ° difference. Other 
results confirm that the X Y  plane and deformed layer- 
normal plane will be more nearly parallel with (i) 
increasing components of layer-parallel shortening (a), 
and (ii) in the most and least competent layers in the 
system. (This is not the case for extended layers; see 
Fig. lb.) 

It is known that for a large strain many material planes 
will move towards subparallelism to the XYplanc (Ghosh 
1982). This fact can account for subparallelism in the least 
competent layers, such that models 1 and 2 are indistin- 
guishable, as argued by Williams (1976). I n the most com- 
petent layers, if the strain history can be safely deduced as 
coaxial (see previous discussion), cleaw~ges will be sub- 
normal to bedding, subparallel to the XYplane and will 
be material planes. In this case, models 1 and 2 are the 
same. In layers of intermediate competence, two factors 
should control the angle between the XYplane (model 1) 
and the deformed layer-normal plane (model 2). With 
decreasing competence there is (i) increased non-coaxial- 
ity (internal vorticity; Means et al. 198/t), moving X Y  
planes and their temporarily coincident material planes 
apart, and (ii) an accompanying increased finite strain 
which has the compensatory effect of moving these planes 
together (Ghosh 1982). It seems that the intermediate 
layers are where the two factors arc the least compensat- 
ory, so that measurable differences between cleavage 
models 1 and 2 exist. 

A consideration of the two models in conjunction with 
strain refraction theory demonstrates that both models 
may be equally valid empirical  models  for cleavage 
refraction in multilayers, since the results are approxi- 
mately the same for a range of competencies. Only in 
certain lithologies might it be possible to determine 
which model was more accurate. This offers a possible 
explanation for the dilemma posed by the apparent 
parallelism of cleavages to X Y  planes in a variety of 
lithologies, when a consideration of microstructural 
cleavage-forming processes, or evidence of shear strain 
on cleavage planes (Dieterich 1969, Hobbs et al. 1976, 
p. 237, Ghosh 1982) would seem to deny this to be 
possible. 
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GEOLOGICAL IMPLICATIONS OF STRAIN 
REFRACTION 

Homogeneous strain 

The theory of strain refraction predicts only two 
instances for homogeneous strain: in homogeneous 
rocks, and in layers having a history of exact layer-paral- 
lel/perpendicular principal straining. The latter case 
seems extremely unlikely except locally, and the former 
should not be expected for varied lithologies except 
under special conditions where the effective viscosity 
contrast is nil. Concepts such as 'finite homogeneous 
strain' and 'homogeneous flattening of folds' would thus 
seem to be unsound models for deformation of layered 
rocks of different lithologies. 

Strain data 

In general, strain ellipsoids (measured or computed) 
should vary from layer to layer in sequences of varied 
lithology. Variations will be in strain intensity, shape (k 
factor) and orientation. Strain data from a particular 
lithology will not be indicative of the 'bulk' strain, nor 
the strain in other lithologies. Thus, the prolate strains in 
quartzites and oblate strains in pelites described by 
Hutton (1979), which are characteristic near ductile 
shear zones in the Dalradian Caledonides (J. E. Treagus 
personal communication 1985), may be a feature of 
strain refraction. Ratschbacher & Oertel (1987) have 
recorded marked differences in fabric and strain for 
different lithologies in polyphase deformation which 
might also be compatible with strain refraction theory. 
However, their markedly prolate strains from pebbles in 
conglomerates could be an effect of inclusion/matrix 
contrast as modelled by Freeman & Lisle (1987). 

Bedding-cleavage intersections 

The implications of strain refraction theory to re- 
lationships of cleavage and strain have been investigated 
in a previous section. Strain refraction patterns have 
been shown to be qualitatively similar to cleavage refrac- 
tion across different lithologies, regardless of whether 
this cleavage developed progressively parallel to XY 
planes, or as material surfaces which ended up nearly 
parallel to X Y  planes in varied lithologies, for the 
reasons already given. 

For 3D strain refraction, the closeness of deformed 
layer-normal planes and X Y  planes is not yet known. 
Cleavages subparallel to refracted XY planes (by what- 
ever reason) should show significant differences in bed- 
ding intersection from layer to layer. Layers of greatest 
competence should have cleavage-bedding intersections 
subparallel to the principal elongation in the layer (a 
potential fold axis), and thus bedding-plane stretching 
lineations parallel to fold hinges. In contrast, the least 
competent layers should show cleavage-bedding inter- 
sections markedly oblique to fold hinges and bedding- 
plane stretching lineations, and potential fold hinges 

transected by cleavage. Stringer & Treagus (1980) noted 
differences in cleavage-bedding intersection and fold 
transection for different lithologies in the Southern 
Uplands of Britain comparable to those described here. 
However, 3D oblique strain is only one of many possible 
explanations for the transection of folds by a contem- 
poraneous cleavage (compare Powell 1974, Borradaile 
1978, Stringer & Treagus 1980, Gray 1981, Treagus & 
Treagus 1981, Soper & Hutton 1984, Soper 1986). 

Heterogeneous simple shear, shear criteria 
and strain history 

Strain refraction theory suggests that all layers in a 
sequence of contrasting lithologies can be modelled as 
layer-width uniform shear zones with simple shear pro- 
portional to viscosity, together with a 'regional' layer- 
parallel/orthogonal homogeneous strain. Thus, for 
decreasing viscosity there is increasing strain intensity, 
which goes hand-in-hand with increasingly non-coaxial 
straining. 

Such a rule has important implications for strain his- 
tories and shear-strain criteria in rocks. Within a set of 
parallel layers of contrasting lithology, the sense of shear 
should be the same, but the values very different, rang- 
ing from nearly zero in the most competent to a maxi- 
mum in the least competent. Such differences would be 
reflected in changes in "structural symmetry" (Chouk- 
roune et al. 1987) and differences in microstructural 
shear criteria (Simpson & Schmid 1983) across different 
lithologies. Competent layers will most probably exhibit 
bedding-symmetrical fabrics and structures characteris- 
tic of an approximate coaxial strain history, whereas 
incompetent layers should exhibit non-coaxial asym- 
metric fabrics and structures (Williams 1979, Lister & 
Williams 1983). Where asymmetry of crystallographic 
fabrics is used to infer the sense of shear (Lister & 
Williams 1983), competent layers should exhibit sub- 
symmetric fabrics, and incompetent layers strongly 
asymmetric fabrics. 

Fabric analyses in thrust zones 

Analyses of quartz c-axis fabrics close to the Moine 
Thrust in NW Scotland (Law 1987, Law & Potts 1987) 
have demonstrated the presence of two components of 
strain: a homogeneous coaxial component (symmetric 
fabric) and heterogeneous (asymmetric) component. 
Law and Potts interpret the former as a homogeneous 
pure strain (a regional 'flattening'), and the latter a 
heterogeneous simple shear of increasing intensity 
towards the thrust plane. Even where the fabric is 
strongly asymmetric near the thrust, the component of 
flattening can still be distinguished (R. D. Law, personal 
communication 1987). The results of Law and Potts have 
remarkable similarities with strain refraction modelling; 
their quartzites have behaved as if there was a progress- 
ive decrease of viscosity approaching the thrust, analog- 
ous to Ramsay's "deformation-induced competence 
contrast" in shear zones (1982). 
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Fracture refraction 

The strain refraction theorem presented here is for 
viscous layers and cannot therefore model fracture. 
However, Foster & Hudleston (1986) adapted the vis- 
cous stress refraction equation (Treagus 1973) to elastic 
behaviour, in order to interpret refracted fracture cleav- 
age. The same principles might be applied to joints 
which refract (Hancock 1985). Stress refraction theory 
predicts stresses subparallel and subperpendicular to 
bedding in elastically competent lithologies, which could 
explain the common occurrence of bedding perpendicu- 
lar joints and rectangular boudins in lithologies such as 
sandstone and limestone. Tensile fractures in very 
incompetent lithologies, if they formed, would be close 
to 45 ° to the bedding. 

Although theory predicts the refraction of principal 
stresses from layer to layer, it cannot be assumed that 
faults would necessarily reflect such refraction. Faults 
will develop and propagate from an initial crack, which 
it seems reasonable to suppose is in the most competent/ 
brittle unit. The propagation of cracks, their linkage into 
larger fractures and subsequent finite displacements as 
faults are beyond the scope of this paper. However, it is 
tentatively suggested that the ramp-flat arrangement of 
thrust faults (Rich 1934) might be a manifestation of 
stress and strain refraction through contrasting litholo- 
gies. Ramps are characteristic of competent lithologies, 
and could be where thrusts initiate (Eisenstadt & De 
Paor 1987). Flats subparallel to bedding in particular 
lithologies may reflect strong fracture refraction, or 
alternatively, they may be layer-parallel shear zones 
developed in highly incompetent layers. 

Just as strain data from individual lithologies will not 
indicate the bulk or regional strain, joint and fault data 
from one rock type (usually competent) should not be 
expected to indicate the regional stress orientations. 

CONCLUSIONS 

The theory of strain refraction across lithological con- 
trasts has many similarities with other models of hetero- 
geneous strain. However, unlike models dependent on 
geometrical compatibility alone, the refraction model 
depends on both mechanical and geometrical compati- 
bility. Strain ellipsoids are considered to refract because 
of changes in the bedding-parallel shear strain com- 
ponent, Across competence contrasts, the bedding- 
parallel shear strain ratio is the inverse of the effective 
viscosity ratio. 

The geological implications of strain refraction are as 
follows. 

parallel simple shear, which are contemporaneous. All 
layers show the same sense of shear, but the amount will 
be inversely proportional to competence. 

(3) The simplest strain refraction is for Y = 1 parallel 
to layering. All ellipsoids will refract on the Yaxis, strain 
variations are in 2D and all ellipsoids are k = 1. 

(4) A more general 2D strain refraction occurs when 
Y ~ 1, or X, or Z are parallel to layering. Strong 
ellipsoid shape variations occur with refraction, and in 
some cases there will be a change-over of principal axes. 
In general, least competent layers will be closest to 
plane-strain (k = 1) ellipsoids. Different rock types 
should be expected to exhibit strain ellipsoids of differ- 
ent shape, intensity and orientation, and show cleavage 
refraction, 

(5) True 3D strain refraction involves a refraction of 
all three ellipsoid axes, and associated shape changes. 
The 3D refraction of X Y  planes means that they will not 
have parallel bedding intersections for different rock 
types. For cleavages subparallel to XYplanes, cleavage- 
bedding intersections should be different for different 
lithologies: subparallel to potential fold hinges in compe- 
tent rocks, and oblique (i.e. transecting) in incompetent. 
Thus, cleavage may transect folds in incompetent lith- 
ologies but fan symmetrically around folds in competent 
layers. 

(6) Very competent rock types will approach the 
homogeneous layer-orthogonal strain component, sub- 
coaxial with bedding. Kinematic indicators may reveal 
an approximate coaxial strain history, but one where 
principal directions may change in relative value. Layers 
in compression should develop a weak cleavage subper- 
pendicular to bedding (i.e. subparallel to the XYplane). 

(7) Intermediate competencies with modest compo- 
nents of shear may be most useful for investigating 
whether cleavage forms exactly parallel to X Y  planes of 
strain, represents the material initial layer-normal plane, 
or neither. 

(8) The least competent lithologies will develop the 
most extreme strain values, and appear dominated by 
layer-parallel simple shear. Structures and fabrics will be 
strongly asymmetric, indicating the non-coaxial strain 
history. Cleavages are predicted subparallel to X Y  
planes, regardless of whether they represent exact non- 
material X Y  planes or are deformed material surfaces. 

(9) Cleavage/bedding angles may provide empirical 
data on effective viscosity ratios in rocks. 

(10) Fractures should reveal features of stress and 
strain refraction. Joints normal to bedding, and 
rectilinear boudins may be evidence of refracted stresses 
in competent/brittle rocks. Ramp-flat geometry may be 
the result of fracture refraction across marked lithologi- 
cal contrasts. 

(1) Strain will not be homogeneous across varied lith- 
ologies, except very locally. 

(2) Refracting strains in a multilayer can be factorized 
into (a) a homogeneous layer-parallel/perpendicular 
(called layer-orthogonal) strain, and (b) a variable layer- 

Acknowledgements--I am grateful for a University of Manchester 
Honorary Research Fellowship which allowed me the facilities of the 
Geology Department for research. 1 appreciate the suggestions for 
improvement made by Paul Williams, Graham Borradaile. Peter 
Hudleston and Win Means, and the encouragement and forebearance 
of Jack Treagus. Richard Hartley is thanked for drawing the figures. 



Strain refraction in layered systems 527 

REFERENCES 

Biot, M. A. 1965. Mechanics of  Incremental Deformations. John 
Wiley & Sons, New York. 

Borradaile, G. J. 1978. Transected folds: a study illustrated with 
examples from Canada and Scotland. Bull. geol. Soc. Am. 89, 
481-493. 

Borradaile, G. J., Bayly, M. B. & Powell, C. McA. (editors) 1982. 
Atlas o f  Dejbrmationul and Metamorphic Rock Fabrics. Springer 
Verlag, New York. 

Choukroune, P., Gapais, D. & Merle, O. 1987. Shear criteria and 
structural symmetry. J. Struct. Geol. 9,525-530. 

Cobbold, P. R. 1977. Description and origin of banded deformation 
structures. I. Regional strain, local perturbations and deformation 
bands. Can. J. Earth Sci. 14, 1721-1731. 

Cobbold, P. R. 1983. Kinematic and mechanical continuity at a 
coherent interface. J. Struct. Geol. 5,341-349. 

Cobbold, P. R. & Barbotin, E. 1988. The geometric significance of 
strain trajectory curvature. J. Struct. Geol. 10,211-218. 

Cobbold, P. R., Cosgrove, J. W. & Summers, J. M. 1971. Develop- 
ment of internal structures in deformed anisotropic rocks. Tec- 
tonophysics 12, 25-53. 

Coward, M. P. & Kim, J. H. 1981. Strain within thrust sheets. In: 
Thrust and Nappe Tectonics (edited by McClay, K. & Price, N. J.). 
Spec. Publs geol. Soc. Lond. 9,275-292. 

Cutler, J. M. & Cobbold, P. R. 1985. A geometric approach to 
two-dimensional finite strain compatibility. J. Struct. Geol. 7,727- 
735. 

Dieterich, J. H. 1969. Origin of cleavage in folded rocks. Am. J. Sci. 
267,155-165. 

Eisenstadt, G. & De Paor, D. G. 1987. Alternative model of thrust- 
fault propagation. Geology 15,630~33. 

Elliott, D. 1972. Deformation paths in structural geology. Bull. geol. 
So~. Am. 83, 2621-2638. 

Flinn, D. 1962. On folding during three-dimensional progressive 
deformation. Q. Jl geol. Soc. Lond. 118,385-433. 

Foster, M. E. & Hudleston, P. J. 1986. "Fracture cleavage" in the 
Duluth Complex, northeastern Minnesota. Bull. geol. Soc. Am. 97, 
85-96. 

Freeman, B. & Lisle, R. J. 1987. The relationship between tectonic 
strain and the three-dimensional shape fabrics of pebbles in 
deformed conglomerates. J. geol. Soc. Lond. 144,635-639. 

Ghosh, S. K. 1982. The problem of shearing along axial plane foli- 
ations. J. Struct. Geol. 4, 63-67. 

Gray, D. R. 1981. Cleavage-fold relationships and their implications 
for transected folds: an example from Southwest Virginia, U.S.A.J.  
Struct. Geol. 3,265-277. 

Hancock. P. L. 1985. Brittle microtectonics: principles and practice. J. 
Struct. Geol. 7,437-457. 

Hara, I. & Shimamoto, T. 1984. Folds and folding. In: Geological 
Structures (edited by Uemura, T. & Mizutani, S.). John Wiley & 
Sons, London. 191-244. 

Harker, A. 1886. On slaty cleavage and allied rock structures with 
special reference to the mechanical theories of their origin. Rep. Br, 
Ass. Adv. Sci. (1885), 813-852. 

Henderson, J. R., Wright, T. O. & Henderson, M. N. 1986. A history 
of cleavage and folding: An example from the Goldenville For- 
mation, Nova Scotia. Bull. geol. Soc. Am. 97, 1354-1366. 

Hobbs, B. E., Means, W. D. & Williams, P. F. 1976. An Outline of  
Structural Geology. John Wiley & Sons, New York. 

Hsu, T. C. 1966. The characteristics of coaxial and non-coaxial strain 
paths. J. Strain Analysis 1,216-222. 

Hutton, D. H. W. 1979. Tectonic slides: a review and reappraisal. 
Earth Sci. Rev. 15,151-172. 

Law, R. D. 1987. Heterogeneous deformation and quartz crystallo- 
graphic fabric transitions: natural examples from the Moine Thrust 
zone at the Stack of Glencoul, northern Assynt. J. Struct. Geol. 9, 
819-833. 

Law, R. D. & Potts, G. J, 1987. The Tarskavaig Nappe of Skye, 
northwest Scotland: a re-examination of the fabrics and their 
kinematic significance. Geol. Mag. 124,231-248. 

Lisle, R, J. 1986. The sectional strain ellipse during progressive coaxial 
deformations. J. Struct. Geol. 8,809-817. 

Lister, G. 8. & Williams, P. F. 1983. The partitioning of deformation 
in flowing rock masses. Tectonophysics 92, 1-33. 

Means, W. D. 1976. Stress and Strain. Springer Verlag, New York. 
Means, W. D. 1983. Application of the Mohr-eircle construction to 

problems of inhomogeneous deformation. J. Struct. Geol. 5, 279- 
286. 

Means, W. D., Hobbs, B. E., Lister, G. S. & Williams, P. F. 1980. 
Vorticity and non-coaxiality in progressive deformations. J. Struct. 
Geol. 2,371-378. 

Powell, C. McA. 1974. The timing of slaty cleavage during folding of 
Precambrian rocks, Northwest Tasmania. Bull. geol. Soc. Am. 85, 
1043-1060. 

Powell, C. McA. 1979. A morphological classification of rock cleav- 
age. Tectonophysics 58, 21-34. 

Ramberg, H. 1964. Selective buckling of composite layers with con- 
trasting rheological properties, a theory for simultaneous formation 
of several orders of folds. Tectonophysics 1. 307-341. 

Ramberg, H. 1976. The strain in a sheet intersecting the strain 
ellipsoid at any angle. Bull. Soc. geol. Fr. 7 Ser. 18, I417-1422. 

Ramsay, J. G. 1967. Folding and Fracturing o f  Ro~ks. McGraw-Hill, 
New York. 

Ramsay, J. G. 1980. Shear zone geometry: a review. J. Struct. Geol. 2, 
83-100. 

Ramsay, J. G. 1982. Rock ductility and its influence on the develop- 
ment of tectonic structures in mountain belts. In: Mountain Building 
Processes (edited by Hsti, K. J. ). Academic Press, London, 111-127. 

Ramsay, J. G. & Graham, R. H. 1970. Strain variations in shear belts. 
Can. J. Earth Sci. 7,786-813. 

Ramsay, J. G. & Huber, M. I. 1983. The Techniques of  Modern 
Structural Geology. Volume 1: Strain Analysis. Academic Press, 
London. 

Ramsay, J. G. & Huber, M. I. 1987. The Techniques of  Modern 
Structural Geology. Volume 2: Folds and Fractures. Academic 
Press, London. 

Ratschbacher, L. & Oertel, G. 1987. Superposed deformations in the 
Eastern Alps: strain analysis and microfabrics. ]. Struct. Geol. 9, 
263-276. 

Rich, J. L. 1934. Mechanics of low-angle overthrust faulting as illus- 
trated by Cumberland thrust block, Virginia, Kentucky and 
Tennessee. Bull. Am. Ass. Petrol. Geol. 18, 1584-1587. 

Roberts, D. 1971. Abnormal cleavage patterns in fold hinge zones 
from Varanger peninsula, Northern Norway. Am. J. Sci. 271, 
170-180. 

Sanderson, D. J. 1982. Models of strain variations in nappes and thrust 
sheets: a review. Tectonophysics 88, 201-233. 

Shimamoto, T. & Hara, I. 1976. Geometry and strain distribution of 
single-layer folds. Tectonophysics 30, 1-34. 

Siddans, A. W. B. 1972. Slaty cleavage--a review of research since 
1815. Earth Sci. Rev. 8,205-232. 

Simpson, C. & Schmid, S. M. 1983. An evaluation of criteria to deduce 
the sense of movement in sheared rocks. Bull. geol. Soc. Am. 94, 
1281-1288. 

Soper, N. J. 1986. Geometry of transeeting, anastamosing solution 
cleavage in transpression zones. J. Struct. Geol. 8,937-940. 

Soper, N. J. & Hutton, D. H. W. 1984. Late Caledonian sinistral 
displacements in Britain: implications for a three-plate collision 
model. Tectonics 3,781-794. 

Sorby, H. C. 1853. On the origin of slaty cleavage. Edinb. New Philos. 
J. 55,137-148. 

Str6mgS.rd, K.-E. 1973. Stress distribution during formation of 
boudinages and pressure shadows. Tectonophysics 16,215-248. 

Stringer, P. & Treagus, J. E. 1980. Non-axial planar S~ cleavage in the 
Hawick Rocks of the Galloway area, Southern Uphmds, Scotland. 
J. Struct. Geol. 2,317-331. 

Treagus, J. E. & Treagus, S. H. 1981. Folds and the strain ellipsoid: a 
general model. J. Struct. Geol. 3, 1-17. 

Treagus, S. H. 1973. Buckling stability of a viscous single-layer system 
oblique to the principal compression. Tectonophw~ics 19. 271-289. 

Treagus, S. H. 1981. A theory of stress and strain variations in viscous 
layers, and its geological implications. Tectonophysics 72, 75-103. 

Treagus, S. H. 1982. A new isogon-cleavage classification and its 
application to natural and model fold studies. Geol. J. 17, 49-64. 

Treagus, S. H. 1983. A theory of finite strain variation through 
contrasting layers, and its bearing on cleavage refraction. J. Struct. 
Geol. 5, 351-368. 

Treagus, S. H. 1986. Some applications of the Mohr diagram for 
three-dimensional strain. J. Struct. Geol. 8,819-830. 

Treagus, S. H. 1988. A history of cleavage and folding: an example 
from the Goldenville Formation, Nova Scotia: Discussion. Bull. 
geol. Soc. Am. 99,152-153. 

Williams, P. F. 1976. Relationships between axial-plane foliations and 
strain. Tectonophysics 30, 181-196. 

Williams, P. F. 1979. The development of asymmetrical folds in a 
cross-laminated siltstone. J. Struct. Geol. 1, 19-30. 

Wood, D. S. 1974. Current views on the development of slaty cleawJge. 
A. Rev. Earth Planet. Sci. 2, 1-37. 


